Eyelander Goes Mobile

The Eyelander game for children with visual field loss is now compatible for use on mobile devices such as phones and tablets!

The game is based on visual search training that has been shown to be effective in improving functional visual abilities in adults with homonymous hemianopia. Our recent evaluation trial showed Eyelander delivered similar magnitude of improvement in functional visual abilities in children and young adults as the more boring adult training programmes. You can play the game and sign up for research to give us feedback on the game via the Eyelander website http://www.eyelander.co.uk. It is free to play and is designed to be colourful, fun and engaging for children. Players search for shapes on the screen which help their character to escape from a mysterious island.

We have been taking a step by step approach to making the game more widely available as we build the evidence base for its effectiveness, but we decided now was the time to make it more widely available for tablets and phones. It actually makes the game more fun to play using a touch screen rather than a mouse and cursor so I am really pleased with the results.

 

 

 

 

 

The game was developed in collaboration with The WESC Foundation Exeter, the School of Computer Science University of Lincoln and Mutant Labs Ltd Plymouth. See here for previous blog posts on the game development and evaluation: Eyelander game evaluation and Parkinsons and Spatial Memory studies published “EyeLander” game for children with VI now available! “Game-ifying” visual search training for children

Eyelander game evaluation and Parkinsons and Spatial Memory studies published

Research in patients both young and old can be difficult, time consuming and stressful to carry out (e.g. due to the ethical approval process, patient recruitment and practical difficulties in testing patients with physical disabilities etc). Yet the importance and potential benefits to patients themselves of such research far out weighs the difficulty entailed in conducting it.

Two of my recently published papers reflect the outcome of patient based projects. Both studies use tasks which require viewers to search through items on a screen using saccadic eye movements. The first addressed the issue of working memory and oculomotor control in Parkinsons disease, a topic I have been researching since the late 1990s. Whilst the second reports the clinical trial evaluating the effectiveness of the Eyelander video game for children who have had neurological injury leading to partial visual field loss (hemianopia).

In the first study, published in the April 2019 edition of the Journal of Cognitive Neuroscience we recorded eye movements while participants performed a version of the CANTAB Spatial Working Memory task which requires patients to search through boxes on a computer screen to find hidden tokens. I first had the idea to do this study whilst watching patients performing this task on a touch screen when I was a post-doctoral research fellow at Charing Cross Hospital, London. I could see that patients were using eye movements a lot in this token “foraging” task, but at the time we didnt have the technology to track their eye movements properly. It was only later that suitable eye tracking equipment and software became available to carry out the research. Amongst other findings the paper shows that people with Parkinsons don’t use eye movements to plan ahead or look back at locations they’ve already searched as effectively as controls, most likely due to an imbalance of the neurotransmitter dopamine in the prefrontal cerebral cortex.

 

The second paper, published in the December 2018 edition of Journal of Visual Impairment and Blindness describes the evaluation of our visual search  game for children with partial visual loss following brain injury affecting the visual parts of the cerebral cortex. The results showed children were able to play the game at home unsupervised and that it had a positive effect on parallel measures of functional visual ability which was similar in magnitude to effects reported for visual search training in adult with partial visual loss following stroke. The Eyelander game is now available for anyone to play online, so please take a look. We are also starting a collaborative project with Great Ormond Street Hospital to evaluate its effectiveness for treating visual field loss following neurosurgical procedures in children.

“EyeLander” game for children with VI now available!

EyelandFor the last 2 years I have been working with the WESC Foundation in Exeter to develop a computer game to  improve vision in children and young people with partial visual loss. In EyeLander you play the role of a character (The “EyeLander”) who must escape from an island using her visual skills. You have to make your way through a series of challenges to escape the erupting volcano, including dodging lava, an angry cow and a giant laughing baby! The only way to get through them to your boat is to find various coloured target shapes hidden amongst distracting items on the screen.

Although based closely on visual search training that has been shown to be effective in adults with hemianopia (see earlier post), EyeLander is unique in that is has been developed in collaboration with children at WESC and social computing researchers from Lincoln’s Computer Science department, adopting a user centred design approach. We believe this will make visual search training more effective and fun for children and even adults with visual field loss. angry baby

We will be evaluating the effectiveness of the game over the next few months and are interested in hearing from you if you suffer from any form of partial visual loss and would be willing to take part in the evaluation. We are also seeking involvement from children in the South West with  normal vision to take part in the research by playing the game and being an EyeLander!

Please contact myself (tlhodgson@lincoln.ac.uk) or Jonathan Waddington (JWaddington@wescfoundation.ac.uk tel:01392 454200) if you would like to know more or take part in the research. 

eyelander_search

“Game-ifying” visual search training for children

Our Knowledge Transfer Partnership with the WESC foundation Exeter is nearly half way through its two years and is getting really exciting. Dr Jonathan Waddington, post-doctoral neuroscientist and lead researcher based at WESC recently visited the Perception Action Cognition research group in Lincoln to up date us on progress. The visual search computer game is nearly ready to move into the next stage of an evaluation trial to see whether it can deliver improvements in functional vision in children with visual field loss. See here for a more details via the WESC research and development blog:

http://wescfoundation.blogs.lincoln.ac.uk/

visual search

WESC R&D

KTP Grant Success – Improving functional vision in children through a visual search computer game

We have been awarded a Knowledge Transfer Partnership (KTP) grant worth approximately £130K to support an exciting project which aims to apply visual neuroscience to the rehabilitation of childhood cerebral visual impairment and special education. The work is a collaboration between the University of Lincoln, Schoolof Psychologyand the West of England School and College for young people with little or no sight (WESC) (www.westengland.ac.uk). The grant will employ an experienced neuroscience / psychology researcher at WESC inExeter who will develop and evaluate a visual search rehabilitation computer game for use in children with partial visual loss. Dr Conor Linehan from the Lincoln Social Computing Research Centre (an expert in educational games) will also play a leading role in the project (http://staff.lincoln.ac.uk/clinehan).

WESC approached us as they realised that many of the children and young people they work with have problems which are due to damage to the brains visual centres rather than disorders of the eye itself. The project will also help WESC build expertise and understanding of the role of the brain in visual perception and its disorders. Previous research has demonstrated that visual search training can lead to significant recovery of vision following damage to visual regions of the brain in adults, but adult training programmes are simply to boring to use with children. At the same time, we expect that implementing visual search training as a game could also lead to improvements to provision of search training to adults with hemianopia (visual loss following stroke).

KTPs are a national initiative which supports partnerships between business and universities enabling Associates to work on challenging, high profile projects (www.ktponline.org.uk). Financial support for the KTP project with WESC is provided by the Technology Strategy Board with offer of a part contribution from the Medical Research Council.

Please let me know if you are interested in finding out more about this project. If you think you have a suitable background and are interested in applying for the position please see the job and application procedure here: http://jobs.lincoln.ac.uk/vacancy.aspx?ref=EL1076A

See also previous post: https://hodgson.blogs.lincoln.ac.uk/2012/05/28/visual-neuroscience-and-specialist-education/